The isoperimetric problem<i>via</i>direct method in noncompact metric measure spaces with lower Ricci bounds

نویسندگان

چکیده

We establish a structure theorem for minimizing sequences the isoperimetric problem on noncompact $\mathsf{RCD}(K,N)$ spaces $(X,\mathsf{d},\mathcal{H}^N)$. Under sole (necessary) assumption that measure of unit balls is uniformly bounded away from zero, we prove limit such sequence identified by finite collection regions possibly contained in pointed Gromov--Hausdorff limits ambient space $X$ along diverging points. The number linearly terms sequence. result follows new generalized compactness theorem, which identifies sets $E_i\subset X_i$ with and perimeter, where $(X_i,\mathsf{d}_i,\mathcal{H}^N)$ an arbitrary spaces. An abstract criterion to converge without losing mass at infinity set also discussed. latter smooth Riemannian

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp and Rigid Isoperimetric Inequalities in Metric-measure Spaces with Lower Ricci Curvature Bounds

We prove that if (X, d,m) is a metric measure space with m(X) = 1 having (in a synthetic sense) Ricci curvature bounded from below by K > 0 and dimension bounded above by N ∈ [1,∞), then the classic Lévy-Gromov isoperimetric inequality (together with the recent sharpening counterparts proved in the smooth setting by E. Milman for any K ∈ R, N ≥ 1 and upper diameter bounds) hold, i.e. the isoper...

متن کامل

Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure

In prior work [4] of the first two authors with Savaré, a new Riemannian notion of lower bound for Ricci curvature in the class of metric measure spaces (X, d,m) was introduced, and the corresponding class of spaces denoted by RCD(K,∞). This notion relates the CD(K,N) theory of Sturm and Lott-Villani, in the case N = ∞, to the Bakry-Emery approach. In [4] the RCD(K,∞) property is defined in thr...

متن کامل

Sharp Geometric and Functional Inequalities in Metric Measure Spaces with Lower Ricci Curvature Bounds

Abstract. For metric measure spaces verifying the reduced curvature-dimension condition CD∗(K,N) we prove a series of sharp functional inequalities under the additional assumption of essentially nonbranching. Examples of spaces entering this framework are (weighted) Riemannian manifolds satisfying lower Ricci curvature bounds and their measured Gromov Hausdorff limits, Alexandrov spaces satisfy...

متن کامل

Structure Theory of Metric-measure Spaces with Lower Ricci Curvature Bounds I

We prove that a metric measure space (X, d,m) satisfying finite dimensional lower Ricci curvature bounds and whose Sobolev space W1,2 is Hilbert is rectifiable. That is, a RCD∗(K,N)-space is rectifiable, and in particular for m-a.e. point the tangent cone is unique and euclidean of dimension at most N. The proof is based on a maximal function argument combined with an original Almost Splitting ...

متن کامل

Measure Rigidity of Ricci Curvature Lower Bounds

The measure contraction property, MCP for short, is a weak Ricci curvature lower bound conditions for metric measure spaces. The goal of this paper is to understand which structural properties such assumption (or even weaker modifications) implies on the measure, on its support and on the geodesics of the space. We start our investigation from the euclidean case by proving that if a positive Ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2022

ISSN: ['1262-3377', '1292-8119']

DOI: https://doi.org/10.1051/cocv/2022052